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Abstract. Spatiotemporal dynamics of Bose-Einstein condensates in moving optical lattices have been
studied. For a weak lattice potential, the perturbed correction to the heteroclinic orbit in a repulsive sys-
tem is constructed. We find the boundedness conditions of the perturbed correction contain the Melnikov
chaotic criterion predicting the onset of Smale-horseshoe chaos. The effect of the chemical potential on
the spatiotemporal dynamics is numerically investigated. It is revealed that the variance of the chemical
potential can lead the systems into chaos. Regulating the intensity of the lattice potential can efficiently
suppress the chaos resulting from the variance of the chemical potential. And then the effect of the phe-
nomenological dissipation is considered. Numerical calculation reveals that the chaos in the dissipative
system can be suppressed by adjusting the chemical potential and the intensity of the lattice potential.

PACS. 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices, and topological excitations – 03.75.Kk Dynamic properties of condensates; collective and hy-
drodynamic excitations, superfluid flow – 05.45.Ac Low-dimensional chaos – 05.45.Gg Control of chaos,
applications of chaos

1 Introduction

Ever since Bose-Einstein condensate was first observed in
1995 in experiments at very low temperature [1,2], theo-
retical and experimental research results on this field have
been reported explosively. Among these research works,
Bose-Einstein condensates in optical lattices attract more
and more interest due to their convenience in studying the
dynamical behavior of coherent matter in periodic poten-
tials. The optical lattice can be created by the interference
of two or more laser beams [3]. In 1996, Damhan et al.
successfully loaded Bose-Einstein condensates in optical
lattices [4], and then in 1998 Anderson et al. also real-
ized a similar experiment [5]. From then on, a series of
interesting physical phenomena concerning static or mov-
ing optical lattices are experimentally and theoretically
investigated, such as quantum phase effects [5,6], quan-
tum computation and quantum information [7,8], Bloch
oscillations [9], matter-wave transport [10], Landau-Zener
tunneling [5,11–14], acceleration of the condensate ground
state [10,15–19], chaos [20,21], and the response of a BEC
to a weak moving optical potential [22]. In 2002, Denschlag
et al. further delivered a series of experimental results with
BECs in moving optical lattices [23]. In 2003, Mellish et al.
presented a scheme for nonadiabatic loading of a BEC
into the ground state of a weak moving optical lattice [24]
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and Fallani and coworkers reported a lensing effect on a
Bose-Einstein condensate expanding in a moving 1D opti-
cal lattice [25]. However, due to the abundant dynamical
properties of BECs systems in optical lattices, there still
exist many open problems to be investigated.

In this paper we study the spatiotemporal dynamics
of Bose-Einstein condensates in moving optical lattices.
In Section 2, we consider the nondissipative system. By
using the direct perturbation technique, we reach a 1st-
order corrected chaotic solution whose boundedness con-
ditions contain Melnikov chaotic criterion predicting the
onset of Smale-horseshoe chaos. In the light of Melnikov-
function method, the condition for the emergence of the
heteroclinic chaos is obtained. By using the chaotic so-
lution, we analytically illustrate the incomputability and
unpredictability of the system’s chaotic evolution of the
atom density. The effect of the chemical potential on the
spatiotemporal dynamics of the systems is numerically in-
vestigated. It is revealed that the variance of the chemical
potential can lead the systems into chaos which can be
suppressed by regulating the intensity of the lattice poten-
tial. In Section 3, the effect of the phenomenological dissi-
pation is considered. We analytically obtain the Melnikov
chaotic criterion and numerically find that the chaos in
the dissipative system can be suppressed by adjusting the
intensities of the chemical potential and the lattice po-
tential. Studies in this paper are based on the nonlinear
Schrödinger equation (GP equation), therefore, Hai et al.
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call the chaos of macroscopic wave function macroscopic
quantum chaos [26]. In Section 4, we give a summary and
some discussions.

2 The nondissipative system

The macroscopic quantum wave function Ψ(x, t) charac-
terizing the dynamical evolution of the BEC system near-
zero temperature satisfies the mean-field Gross-Pitaevskii
equation [27,28]

i�
∂Ψ

∂t
= − �

2

2m

∂2Ψ

∂x2
+ VextΨ + g|Ψ |2Ψ − µΨ (1)

with � being Plank’s constant, m the atomic mass, µ the
chemical potential and usually a function of the temper-
ature and the total number of condensate atoms, g =
4πas�

2/m the nonlinearity parameter that takes in ac-
count the mean field produced by the other bosons, and
as the s-wave scattering length. as > 0 indicates a repul-
sive interaction and as < 0 corresponds to an attractive
case. Experiment physicists have successfully developed
advanced experimental techniques that make it possible
to rapidly and effectively adjust the value and sign of the
s-wave scattering length by using magnetic-field-induced
Feshbach resonance [29]. In this paper, we consider the
case that the external confining potential Vext has the form

Vext = −�
Ω1(t)Ω2(t)

2∆
[1 − cos(2kx + δt)],

which consists of two counter-propagating laser beams
along the x-direction. Here, k is the laser wave vec-
tor fixing the velocity of the moving laser potential as
v = δ/(2k), δ is the frequency difference between the two
laser beams, Ω1(t) and Ω2(t) are the Rabi frequencies,
and ∆ is the detuning from resonance. We consider the
case with Ω1(t) = Ω2(t) = Ω0. So the confining potential
becomes Vext = −I[1− cos(2kx+ δt)] with I = �Ω2

0/(2∆)
being a constant. In the present work, we take a similar
choice to that in [30] by neglecting the constant term. And
then the confining potential is reduced to a simple form
as Vext = I cos(2kx + δt). So we have the following GP
equation

i�
∂Ψ

∂t
= − �

2

2m

∂2Ψ

∂x2
+ I cos(2kx + δt)Ψ

+g|Ψ |2Ψ − µΨ. (2)

Traveling wave solutions of GPE have been proved to be
effective forms in exploring BEC systems [31–33]. In the
present work, because the condensate moves with the mov-
ing lattice potential, we also concentrate our attention on
the traveling wave solution of the GP equation and set
it as

Ψ = φ(ξ)exp[i(αx + βt)] (3)

with α and β being two unfixed real parameters. Here, we
define a space-time variable ξ = x + vt which shows the
traveling wave moves with the same velocity as that of

the optical lattice. Solution (3) indicates that the matter
wave in the BEC system is a Bloch-like wave.

Substituting equation (3) into equation (2), we obtain
an ordinary differential equation

�
2

2m

d2φ

dξ2
+ i

(
�

2α

m
+ �v

)
dφ

dξ
−
(

�β +
�

2α2

2m

)
φ

− g|φ|2φ = −µφ + I cos(2kx + δt)φ. (4)

It is more convenient to rescale equation (4) through in-
troducing the dimensionless variables

ζ = kξ, ṽ = 2mv/�k, β̃ = �β/Er,

α̃ = α/k, Ĩ = I/Er, µ̃ = µ/Er, Er = (�2k2)/(2m).
(5)

Here, Er = �
2k2/2m is the recoil energy and we regard

I = �Ω2
0/2∆ as the intensity of the optical potential. Then

equation (4) can be rewritten as

d2φ

dζ2
+ i(2α̃ + ṽ)

dφ

dζ
− (β̃ + α̃2)φ

− g̃|φ|2φ = −µ̃φ + Ĩ cos(2ζ)φ, (6)

where the function φ has been normalized in units of
the wave vector k and the dimensionless nonlinear in-
teraction coefficient g̃ = 8πask. Considering the form of
equation (6), we assume the function φ = A(ζ)exp[iB(ζ)],
so the total number of atoms in the condensate N =∫ +∞
−∞ |A(ζ)|2dζ. Inserting φ = A(ζ)exp[iB(ζ)] into

equation (6) leads equation (6) to

d2A

dζ2
− A

(
dB

dζ

)2

− (2α̃ + ṽ)A
dB

dζ
− (β̃ + α̃2)A

− g̃A3 + i

[
A

d2B

dζ2
+ 2

dA

dζ

dB

dζ
+ (2α̃ + ṽ)

dA

dζ

]
=

− µ̃A + Ĩ cos(2ζ)A. (7)

From equation (7) one can see that the system’s dynamical
behavior is complex. For simplicity, we consider the case
of eliminating the imaginary part of equation (7). To this
end, we set

2
dA

dζ

dB

dζ
+ (2α̃ + ṽ)

dA

dζ
= 0,

which leads to dB/dζ = −(ṽ/2 + α̃) and d2B/dζ2 = 0.
Accordingly, equation (7) is reduced to a simple form

d2A

dζ2
+
(

µ̃ − ṽ2

4

)
A − g̃A3 − Ĩ cos(2ζ)A = 0. (8)

In general, the chemical potential µ̃ is usually a function
of the temperature and the total number of condensate
atoms. In a practical system both of them are changeable.
Meanwhile, the velocity ṽ of the lattice can be effectively
adjusted by well and truly regulating k and δ. Therefore,
through adjusting experimental facilities and conditions
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Fig. 1. Phase portrait of the unperturbed system with a center
(A, Ȧ) = (0, 0) and two saddles (A, Ȧ) = (±Λ/

√
g̃, 0).

there are three choices of the value of (µ̃ − ṽ2/4) as ex-
pressed below

µ̃ − ṽ2

4

⎧⎨
⎩

< 0
= 0
> 0

. (9)

And it has been known that the value and sign of the
nonlinearity parameter g̃ can also be effectively changed
through the Feshbach resonance [29]. Thus, the two fol-
lowing inequalities g̃ < 0 and g̃ > 0 can be satisfied. When
g̃ = 0, the system becomes an ideal cloud of noninteract-
ing bosons.

In our perturbation analysis we concentrate our atten-
tion on a repulsive system (g̃ > 0) with (µ̃ − ṽ2/4) > 0.
When the laser potential is weak, we can treat it as a per-
turbation to the system. Accordingly, equation (8) can be
rewritten as

d2A

dζ2
+ Λ2A − g̃A3 = Ĩ cos(2ζ)A (10)

with Λ2 = µ̃−ṽ2/4. As is known, equation (10) (also called
Duffing equation) describes a periodically driven Duffing
oscillator. The Duffing oscillator has always been used as
a classical model for analysis of nonlinear phenomena and
its dynamical behavior has been widely studied. We can
apply direct perturbation and Melnikov-function methods
to investigate the chaotic dynamical behavior of the am-
plitude of the macroscopic quantum wave function. To this
aim, first, by assuming Ĩ = 0 we arrive at an unperturbed
Hamiltonian

H(A, Ȧ) =
Ȧ2

2
+

Λ2A2

2
− g̃A4

4
. (11)

And then, in Figure 1 we plot the phase portrait of the
unperturbed system. It is demonstrated that there ex-
ists one center (A, Ȧ) = (0, 0) and two saddles (A, Ȧ) =
(±Λ/

√
g̃, 0) in the system. The two orbits passing the sad-

dles are just the heteroclinic orbits forming the separatrix,
which is of particular importance in our theoretic analy-
sis. What we are interested in is the system’s dynamical
behavior close to the separatrix.

Now we expand equation (10)’s solution close to the
separatrix as follows

A = A0 + A1, for |A1| � |A0|. (12)

Substituting equation (12) into equation (10), we obtain
the following equations

d2A0

dζ2
+ Λ2A0 − g̃A3

0 = 0 (13)

and

d2A1

dζ2
+ Λ2A1 − 3g̃A2

0A1 = ε1,

ε1 = Ĩ cos(2ζ)A0. (14)

From equations (11) and (13), it can be seen that the
separatrix solution is just the heteroclinic solution of
equation (11) expressed as

A0 =
Λ√
g̃

tanh
[

Λ√
2
(ζ − ζ0)

]
(15)

with constant ζ0 = −√
2/Λ tanh−1[A0(0)

√
g̃/Λ].

According to references [26,34–37], when ε1 = 0, by
using the solution of the zeroth order equation one can eas-
ily get two linearly independent solutions of equation (14)
bearing the following forms

f1 =
dA0

dζ
=

Λ2

√
2g̃

sech2

[
Λ√
2
(ζ − ζ0)

]
, (16)

f2 =
dA0

dζ

∫ (
dA0

dζ

)−2

dζ

=
√

g̃

Λ2
sech2

[
Λ√
2
(ζ − ζ0)

]{
3

4
√

2
(ζ − ζ0)

+
1

2Λ
sinh[

√
2Λ(ζ − ζ0)]

+
1

16Λ
sinh[2

√
2Λ(ζ − ζ0)]

}
. (17)

Evidently, f2 is unbounded and will exponentially increase
with the growth of ζ due to its inclusion of hyperbolic sine
functions. Now, given equations (16) and (17) and through
variation of constants, we can easily construct the general
solution of equation (14) [26,34–37]

A1 = f2

∫ ζ

C1

f1ε1dζ − f1

∫ ζ

C2

f2ε1dζ (18)

with C1 and C2 being two arbitrary constants adjusted
by the initial conditions. Applying equations (14), (16)
and (17) to equation (18) and carefully calculating the
limits for ζ → ∞ reveal that

lim
ζ→±∞

A1 → ±∞. (19)

Equation (19) indicates that the solution A1(ζ) is un-
bounded thanks to the exponential increasing of f2 to in-
finity as ζ → ±∞. This usually means the solution (18) is
Lyapunov unstable [37]. However, it is fortunate that the
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Fig. 2. The phase portraits in
(A, Ȧ) plain for repulsive in-
teraction. Figure (a) indicates
that the system is in a regular
and periodic state. Figure (b)
shows that the system is in a
non-periodic state. The param-
eters and initial conditions are
set as ṽ = 2.0, Ĩ = 0.25, g̃ =
0.712, A(0) = 0.25, and Ȧ = 0.

instability can be controlled by some necessary and suffi-
cient conditions, namely, solution (18) can be Lyapunov
stable if and only if the following conditions

G± = lim
ζ→±∞

∫ ζ

C1

f1ε1dζ = 0 (20)

are satisfied [37]. From G+ − G− = 0, we can eliminate
the constant C1 and subsequently reach

M(ζ0) = G+ − G− =
∫ +∞

−∞
f1ε1dζ = 0. (21)

To our knowledge, the function M(ζ0) is just the well-
known Melnikov function

M(ζ0) = sin(2ζ0)csch

( √
2π√

µ̃ − ṽ2/4

)
= 0. (22)

Melnikov function is also called Melnikov distance between
the stable and unstable manifolds in the Poincaré section
at ζ0. It’s well-known that if the Melnikov function M(ζ0)
has simple zeros, there exists Smale-horseshoe chaos in the
system. It is clear that only when sin(2ζ0) = 0, namely,

ζ0 = ±nπ

2
(23)

with i being an integer number, can M(ζ0) has simple
zeros. Chaos may be destructive sometimes; but it can
also be desired for other occasions. Through careful choice
of the parameters and initial conditions one can satisfy
(23) or not. So one can successfully reach a chaotic or
nonchaotic situation.

Now, by using the chaotic solution (18), we analytically
illustrate the incomputability and unpredictability of the
system’s chaotic evolution of the atom density. As can be
seen in the chaotic solution (18), the first term of it is
a product between the exponential increasing function f2

and an analytically unsolvable integral, which cannot be
expressed as finite terms of elementary functions. It is well-
known that any computer cannot calculate infinite terms.
All functions of infinite terms are treated as functions of
finite terms in computers. Therefore, deviations from the

exact value are inevitable in course of calculation. Mean-
while, different numerical integration techniques and dif-
ferent integration steps can also result in such deviations.
Furthermore, equation (22) relates the system parameters
and constants to the irrational number π, so we cannot
choose precise values of system parameters and constants.
Therefore, we are not able to avoid deviations during the
calculation process in computers. Because of the inclusion
of f2 in the product, those deviations will be exponentially
amplified to infinity with the increase of ζ. This indicates
the chaotic evolution of the atom density is very sensitive
to the initial conditions, system parameters, and integra-
tion methods. In a word, the chaotic evolution of the atom
density is incomputable and unpredictable. That is a cru-
cial characteristic of chaos.

In typical experiments for repulsive atom-atom inter-
action to date, the relevant parameters are selected by
as = 2.65 nm and k = 1.07×107 m−1 for Na [38]. Accord-
ingly, the dimensionless nonlinearity parameter g̃ = 0.712.
Denschlag et al. had demonstrated the maximum lattice
velocity in experiment can reach 2.1 × 10−1 ms−1 [23]
with a corresponding maximum dimensionless velocity
ṽ ≈ 14.43. We adopt Denschlag et al.’s lattice velocity
v = 3.0 cms−1 [23] with the corresponding dimensionless
velocity ṽ ≈ 2.0 for the repulsive system.

The chemical potential is of crucial importance in the
formation and stability of BECs. Here, we mainly concen-
trate our attention on the role of the chemical potential in
the spatiotemporal dynamics of the system. With a set of
parameters and initial conditions, by using equation (8)
we plot dA(ζ)/dζ as a function of A(ζ) in the phase space
of (A(ζ), dA(ζ)/dζ) in Figures 2 and 3. When the chemical
potential µ̃ = 10, there is only a single closed orbit in the
phase space as shown in Figure 2a. That means no chaos
appears in the system. But when the chemical potential µ̃
is decreased to 5.1, the closeness of the single orbit is de-
stroyed and the points spread randomly in the phase space
as shown in Figure 2b, which implies that the system has
stepped into a non-periodic state. When the chemical po-
tential µ̃ is further decreased to 2.11, a typical chaotic
attractor appears, see Figure 3a, which denotes that the
system has stepped into a chaotic state. Figure 3b is the
corresponding chaotic temporal and spatial evolutions of
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Fig. 3. Figure (a) is a chaotic
attractor for the repulsive sys-
tem in (A(ζ), Ȧ(ζ)) plain. Fig-
ure (b) is the corresponding
temporal and spatial evolutions
of A(ζ) demonstrating that the
evolutions of A(ζ) is chaotic.
The parameters and initial con-
ditions are set as those of
Figure 2a.
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Fig. 4. There is only single closed orbit in the (A(ζ), Ȧ(ζ))
plain, which means the chaos have been suppressed. The
parameters and initial conditions are the same as those of
Figure 3.

A(ζ). Figures 2 and 3 illuminate that the decrease of the
chemical potential can lead the system into a chaotic state.

Fortunately, we numerically find that the chaos can
be suppressed by regulating the intensity of the lattice
potential.

Suppression of chaos in nonlinear systems is of much
practical importance and has received considerable atten-
tion in recent years [39]. The growing interest in suppres-
sion of chaos comes from the idea of controlling chaos ad-
vanced by Ott, Grebogi, and Yorke [40]. Controlling chaos
means changing the chaotic motion to regular motion; and
then the chaos is suppressed. Braiman et al. had pointed
out that chaos in dynamical systems can be controlled
with weak periodic perturbations [41]. Here, in the nu-
merical experiment we will demonstrate the suppression
of the spatiotemporal chaos in the system by adjusting
the intensity of the lattice potential.

Considering the case of Figure 3, we only decrease the
intensity of the lattice potential and keep the other pa-
rameters fixed. It is found that when the intensity Ĩ of
the lattice potential is decreased to 0.001, there is only
one closed orbit in the phase space, see Figure 4. That is
to say, the chaos has been completely suppressed.

3 The dissipative system

In a realistic Quasi-1D system the condensate is prone
to damping, e.g., due to a small thermal cloud [42,43].
In order to explore the dissipative dynamics, a damping
term �λ∂Ψ/∂t [44,45] is introduced to the left-hand side
of equation (2)

(i + λ)�
∂Ψ

∂t
= − �

2

2m

∂2Ψ

∂x2
+ I cos(2kx + δt)Ψ

+g|Ψ |2Ψ − µΨ, (24)

here, λ < 0 for damping. As has been pointed out in refer-
ence [45] that the dissipation in the GP equation is treated
phenomenologically. This treating way of dissipation fol-
lows the work of Choi et al. [44]. But what should be
pointed out is that the introduction of damping is only
an approximate way of treating thermal dissipation in the
system.

Considering the traveling solution expressed as solu-
tion (3), we easily get the following ordinary differential
equation

�
2

2m

d2φ

dξ2
+ i

(
�

2α

m
+ �v − i�λv

)
dφ

dξ
−
(

�β +
�

2α2

2m

− i�βλ

)
φ − g|φ|2φ = −µφ + I cos(2kx + δt)φ.

(25)

For simplicity, we apply the dimensionless variables
defined in equation (5) to equation (25), and then
equation (25) is changed into

d2φ

dζ2
+ i(2α̃ + ṽ − iλṽ)

dφ

dζ
− (β̃ + α̃2 − iβ̃λ)φ

− g̃|φ|2φ = −µ̃φ + Ĩ cos(2ζ)φ (26)

with the dimensionless nonlinear interaction coefficient
g̃ = 8πask and the function φ being normalized in units
of the wave vector k. Like in the above section, assum-
ing φ = A(ζ)exp[iB(ζ)] and applying it to equation (26)
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Fig. 5. Phase portraits in the
(A(ζ), Ȧ(ζ)) plain. Figure (a) is
a chaotic attractors with µ̃ =
1.28 and Ĩ = 0.26. Figure (b)
is a periodic attractor with ṽ =
0.005 and µ̃ = 40. The other
parameters and initial condi-
tions are set as g̃ = 0.712,
Ĩ = 0.26, A(0) = 0.4, and
dA(ζ)/dζ|ζ=0 = 0.

lead to

d2A

dζ2
− A(

dB

dζ
)2 − (2α̃ + ṽ)A

dB

dζ
+ λṽ

dA

dζ

− (β̃ + α̃2)A − g̃A3 + i[A
d2B

dζ2
+ 2

dA

dζ

dB

dζ
+ (2α̃ + ṽ)

dA

dζ

+ λṽA
dB

dζ
+ λβ̃A] = −µ̃A + Ĩ cos(2ζ)A. (27)

Equation (27) itself demonstrates its extreme complexity.
We consider the case of eliminating the imaginary part of
equation (27). It is found that when the two conditions

2
dA

dζ

dB

dζ
+ (2α̃ + ṽ)

dA

dζ
= 0,

λṽA
dB

dζ
+ λβ̃A = 0,

are satisfied, i.e., dB/dζ = −β̃/ṽ = −(ṽ/2 + α̃),
we can successfully eliminating the imaginary part of
equation (27). Accordingly, equation (27) is reduced to
the following simple equation

d2A

dζ2
+
(

µ̃ − ṽ2

4

)
A − g̃A3 = Ĩ cos(2ζ)A + λṽ

dA

dζ
. (28)

When the damping and the lattice potential are so weak
that they can be treated as perturbations to the sys-
tem, the Melnikov function for the system governed by
equation (28) is

∆M(ζ0) = −4πĨ

g̃
sin(2ζ0)csch

( √
2π√

µ̃ − ṽ2/4

)

+
2
√

2
3g̃

λṽ

(
µ̃ − ṽ2

4

)3/2

= 0. (29)

with constant ζ0 = −√
2/Λ tanh−1[A0(0)

√
g̃/Λ].

To guarantee the Melnikov function ∆M(ζ0) has sim-
ple zeros, the following equation

d∆M

dζ0
= −8πĨ

g̃
cos(2ζ0)csch

( √
2π√

µ̃ − ṽ2/4

)
�= 0 (30)

must be satisfied, namely, cos(2ζ0) �= 0, which results in
sin(2ζ0) �= ±1. Combining this with equation (29), we get
the relationship between the parameters of the chaotic
region as follows:∣∣∣∣∣

√
2λṽ(µ̃ − ṽ2/4)3/2

6πĨ
sinh

( √
2π√

µ̃ − ṽ2/4

)∣∣∣∣∣ < 1. (31)

According to equation (31), it is obvious that, through
adjusting the frequency difference δ between the two laser
beams, the laser wave vector k, the detuning ∆, and the
Rabi frequency Ω0, one can keep the values of parame-
ters away from or in the parameter space determined by
equation (31) in experiments. In other words, the inequal-
ity (31) is experimentally reachable.

Because the introduction of damping is only an ap-
proximate way of treating the dissipation, one cannot com-
pletely rely on this for discussion of chaos in such systems.

In order to see clearly the dynamical properties of the
dissipative system, with a set of parameters and initial
conditions we numerically solve equation (28) and plot
Figure 5. We adopt the value of λ = −0.03 determined by
Choi et al. in their work [44]. From Figure 5a one can see
a typical chaotic attractor in the phase space. But when
ṽ = 0.005 and µ̃ = 40 and the other parameters are kept
unchanged, we find the chaos disappears and there is only
one closed orbit in the phase space as shown in Figure 5b.
This implies that the chaos is suppressed.

4 Summary and discussions

In summary, we have investigated the spatiotemporal dy-
namics of Bose-Einstein condensates in moving optical lat-
tices. We use direct perturbation and Melnikov-function
methods to theoretically study the space-time chaos in
the presence of repulsive atom-atom interaction. The con-
dition for the emergence of the heteroclinic chaos is ob-
tained. Through the first order corrected solution, we
analytically demonstrate the incomputability and unpre-
dictability of space-time evolution of the atom density. It
is numerically revealed that the variance of the chemical
potential can lead the system into chaos. But, regulating
the intensity of the lattice potential can efficiently sup-
press the chaos resulting from the variance of the chemical
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potential. In a realistic quasi-1D system the condensate
is usually prone to damping, therefore, the effect of the
phenomenological dissipation is considered. The Melnikov
chaotic criterion for the dissipative system is analytically
obtained. Numerical calculation reveals that the chaos in
the dissipative system can be suppressed by adjusting the
chemical potential and the intensity of the lattice poten-
tial.

One thing to be clarify is that the conclusions are cor-
rect for the two particular situations, where the governing
equations imply that the results provide an indicative be-
havior (chaos) of such a system. Another thing which we
want to point out is that if the relation µ̃− ṽ2/4 > 0 can-
not be satisfied, chaos can also exist in some parameter
regions.

Denschlag and co-workers had successfully loaded
Bose-Einstein condensates into optical lattices. If the pa-
rameters and initial conditions satisfy the chaotic crite-
rion, chaos can be observed.

To our knowledge, the stability of the condensates is
of great importance in dynamic manipulation, quantum
computation, quantum information processing, and so on.
However, chaos in BEC systems can undermine the sta-
bility. Hence, studies on chaos in BEC systems are impor-
tant.
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